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ME525 Applied Acoustics Lecture 12, Winter 2024
Combining monopoles and dipoles:
The Helmholtz-Kirchhoff (H-K) integral
An exact solution to the H-K integral

Peter H. Dahl, University of Washington

Superposition of point sources

Using the free space Green’s function representing a source at r⃗0

g =
1

4π

eik|r⃗−r⃗0|

|r⃗ − r⃗0|
(1)

we can find the total pressure for a superposition of n point sources (Fig. 1) as

p(r) =
q1
4π

eik|r⃗−r⃗1|

|r⃗ − r⃗1|
+

q2
4π

eik|r⃗−r⃗2|

|r⃗ − r⃗2|
+ ....+

qn
4π

eik|r⃗−r⃗n|

|r⃗ − r⃗n|
(2)

allow the source strength for the n source to be qn, with e−iωt time dependence assumed. (Note also
that a different frequency ω can be used for each of the n sources.)

Figure 1: Superposition of n point sources composing the total acoustic pressure at the field point r⃗

Similarly, there can be continuous distribution of point sources found within a volume Vs–like
a sphere filled with marbles each being a point source–with any particular source at r⃗s having a
source strength q(r⃗s). In this case the total pressure is the integral over the volume Vs

p(r) =

∫
Vs

q(r⃗s)g(r⃗, r⃗s)dVs (3)
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recalling the notation that g(r⃗, r⃗s) is Eq.(1) with r⃗0 = r⃗s. Do a quick check: if the source distribution
consisted of one discrete source, say at position r⃗0 inside the volume, then q(r⃗s) = qδ(r⃗s − r⃗0), and
integral over Vs yields p(r) = qg(r⃗, r⃗0) in view of the sifting property of the delta function.

A vibratory surface consisting of a surface distribution of elementary sources

Next apply the superposition principle to construct a surface distribution of sources. Figure 2
depicts a vibrating 3D surface of spherical shape generating sound. As a first attempt, model sound
generation by a surface distribution of monopole sources with constant velocity amplitude on the
surface such that the elemental pressure due to a single patch of surface dS located at r⃗s is

dp = −iωρ0un(r⃗s)g(r⃗, r⃗s)dS (4)

where un(r⃗s) is the normal velocity on the surface at r⃗s. Notice that for this problem we have
suspended use of source strength q in favor of an explicit value of the normal acceleration −iωun(r⃗s)

times surface area dS. However, do look back onto the discussion in Lecture 8, where the concept
of q was introduced and confirm that q has the same dimension as −iωun(r⃗s)dS, i.e., the elemental
dS takes on the role of sphere area a2.

The thick, black line (arrow) in Fig. 2 represents the vector r⃗−r⃗s connecting one of the monopole
sources related to surface area dS located at r⃗s (or source point) to some arbitrary field point r⃗.
(These r⃗s and r⃗ vectors are not explicity shown but would be associated with a coordinate system
as in Fig. 1.)

Figure 2: Spherical sound source consisting of surface distribution of elementary sources. Radiation from
one monopole elementary source to a field point is shown by solid black line; radiation from two dipole
elementary sources is shown by the dotted lines.
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It would be really convenient if we could just find the total pressure radiated from this source
by integrating over the surface S, or basically summing up all the elemental pressure contributions
dp from each dS as follows:

pm(r⃗) =

∫
S

−iωρ0un(r⃗s)g(r⃗, r⃗s)dS (5)

where the subscript m ties this pressure to a distribution of monopoles over surface S. This is
indeed possible for some geometries which leads to an approach of very practical use, however, for
an arbitrary 3D vibrating surface as in Fig. 2, Eq.(5) does not give the complete story.

But for such a non-planer surface of high curvature there will in general will be a need for
surface distribution of dipole sources. The two thin, dashed lines sepresent the vectors r⃗ − r⃗s con-
necting two different dipole sources. Both dipoles have their axes normal to the surface, but dipole
1 is expected to contribute more to the total pressure at the field point owing to the orientation of
the dipole axis with the field point. The problem lies in the fact that when distributed over such a
highly curved surface as in Fig. 2, elemental vibrating sources as in monopoles each with contribu-
tion dp, cannot assume to be in isolation and operating in free space. This is because other parts of
surface S tend to shadow, reflect, and otherwise exert an influence by generating a pressure distri-
bution on the surface of the vibrating body p(r⃗s) that must be accounted for (Fahy 2001, Tempkin
2001).

Such an accounting is made by including a distribution of elemental dipole sources as follows:

pd(r⃗) =

∫
S

p(r⃗s)
∂g

∂n
dS (6)

where the subscript d ties this pressure to a distribution of dipoles over surface S.
Now take the integral in Eq.(5) about monopole surface source, plus the integral in Eq.(6) about

dipole surface sources, and combine them. The results is new integral, Eq.(7) for finding the pres-
sure at a field point r⃗ based on this surface distribution of dipoles (first term) and monopoles (sec-
ond term). Thus the total pressure can be written as follows:

p(r⃗) =

∫
S

[p(r⃗s)
∂g

∂n
− iωρ0un(r⃗s)g(r⃗, r⃗s)]dS (7)

This is known as the Helmholtz-Kirchhoff integral.
The Helmholtz-Kirchhoff (H-K) integral poses many challenges to solving. One reason is the

first integral is generally more difficult to evaluate than the second. Also, in many instances one
may not know the strength of each dipole which is defined by, or linked to, the surface pressure
p(r⃗s) at that same position.

For example, a vibrating surface, such as an engine (Fig. 3) might be modeled with constant
harmonic velocity amplitude on the engine surface, uo, associated with engine vibration (i.e, an
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Figure 3: Boundary mesh for the boundary integral method (BEM) analysis for study of noise emission from
a diesel engine. This is Fig. 5 from D. W. Herrin et al.

acceleration amplitude of ωuo.) Modeling sound radiation from the engine thus involves the H-K
integral with un(r⃗s) on the engine surface set to uo. However this does not necessarily specify the
surface pressure p(r⃗s) and the H-K integral needs to be recast as an integral equation for p(r⃗s) and
generally solved numerically. Often this is a very difficult challenge; some numerical approaches
include the boundary element method or BEM.

In ME525 we instead move forward with a more simple, but extremely practical, alternative to
summing elemental sources over an area of a radiating surface, known as the Rayleigh Integral.

But let’s not leave the H-K integral quite yet as is instructive to both drill down a bit more on
the differential pressure associated with the dipole contribution, and also study an example exact
solution. This will help to better inform us on the appropriate usage of the Rayleigh integral.

Within the H-K integral the dipole moment vector as part of an elemental source at some po-
sition on the surface r⃗s cannot take just any orientation but must align with the outward normal
n⃗ at position r⃗s on the surface. A quick explanation for this is that the dipole strength must come
from the pressure at that specific point, p(r⃗s), which can only act normally on the surface, hence the
dipole moment vector must also be normal to the surface.

For the surface in Fig. 2, the two dipoles are shown at different locations and dipole moment
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vectors (blue arrows) are shown aligned with the surface normal at these locations. To obtain the
pressure at the field point the dot product of the moment vectors with the corresponding r⃗ − r⃗s

vectors (dotted lines in Fig. 2) is needed, and on this basis it is easy to see that dipole 2 contributes
much less than dipole 1 owing to the much smaller dot product.

The differential pressure associated with the dipole contribution is,

dp = p(r⃗s)
∂g

∂n
dS. (8)

Confirm yourself that Eq.(8) has correct dimension, given that ∂g
∂n

is the spatial derivative of g with
respect to an outward normal n⃗ at position r⃗s on the surface. For the surface dipoles in Fig. 2,
identify [p(r⃗s)dS]n⃗ with the dipole moment vector f⃗D first discussed in context of an isolated dipole
(Lecture 11). Note further that n⃗ · ∇g = ∂g

∂n
. It may also be useful in some cases to use

∂g

∂n
= cosα

∂g

∂R
dS (9)

where R = |r⃗ − r⃗s|, with ∂g
∂R

= eikR

4πR
(ik − 1

R
). Using this we can again see the interpretation of the

angle α between the dipole moment vector and the vector connecting dipole source location with
the field point (Fig. 3, Lecture 11).

In summary, think of sound radiation from a general 3D body, as in the sphere shown in Fig. 2
in terms of the H-K integral as a superposition of monopole and dipole sources distributed over the
entire, radiating area, of the 3D body. The monopole contribution will have strength −iωρ0un(r⃗s)dS

depending on the particular location r⃗s, and each source contribution is propagated to the field
point via g which is function of field point r⃗ and r⃗s. The dipole contribution will have strength
p(r⃗s)dS, propagated to the field point via ∂g

∂n
, also a function of r⃗ and r⃗s. By inspection of the basic

geometry, e.g., as the case in Fig. 2, one can intuit that many dipole contributions will have little or
no effect depending on the orientation of the dipole source with the particular r⃗ − r⃗s vector.

An exact solution to the Helmholtz-Kirchhoff integral: radiation from a sphere

We next provide an exact solution to the Helmholtz-Kirchhoff integral for a problem we have
solved earlier via a much simpler means: radiation from a sphere of radius a vibrating with con-
stant amplitude over its surface. The problem solved (Lecture 4) involved the specification of a
constant velocity on the spherical surface at r = a, equal to u0e

−iωt, where u0 is a complex ampli-
tude, hence the vibration or acceleration amplitude is −iωu0, and we’ve seen this problem multiple
times in homework. The solution is

p(r, t) = aρ0c
u0

r
eik(r−a)(

ka

ka+ i
)e−iωt (10)
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Why do this again? Hopefully the exercise should convince you that the Helmholtz-Kirchhoff
integral really works, and one can truly describe sound radiation from a vibrating body as an
appropriate sum of monopoles and dipoles. Furthermore, exact, canonical, problems like this can
be used as ”benchmark” solutions to compare results of more complicated numerical codes.

The H-K integral is Eq.(11) where S is the surface of a sphere of radius a, and the constant u0

replaces a generally variable normal velocity un(r⃗s) on the surface at r⃗s

p(r⃗) =

∫
S

[p(r⃗s)
∂g

∂n
− iωρ0u0g(r⃗, r⃗s)]dS. (11)

There is an unknown pressure over the surface of the sphere p(r⃗s), but symmetry demands that
p(r⃗s) not take on any value different from any other value (e.g., as it can for the diesel engine
shown in Lecture 11), so it is set to the constant p(a). However this constant pressure value remains
unknown and it will have to be determined eventually.

To take further advantage of symmetry, a coordinate system is placed at the center of the sphere
(Fig. 4) Now break up the H-K integral, and deal with second integral first, call it Im

Im =

∫
S

g(r⃗, r⃗s)dS (12)

which upon multiplication by −iωρ0u0 gives the acoustic field from a uniform distribution of
monopole sources over the surface of the sphere.

Figure 4: A spherical source of radius a placed at the center of the Cartesian coordinate system (x,y,z). Be-
cause of spherical symmetry, one spherical coordinate r describes all variation.

Since the field at point r⃗ doesn’t show angular variation owing to symmetry, a good strategy
then is to identify a field point at range r located to be located on one of the Cartesian axes. Set this
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point to be on the x-axis with r⃗ =

 r

0

0

, and owing to symmetry this point represents any field

point.
Now introduce polar angle α and azimuthal angle θ, then all source points r⃗s are described

using r⃗s =

 a sinα cos θ

a sinα sin θ

a cosα

. Next put R = |r⃗ − r⃗s| =
√
r2 + a2 − 2ar cosα, and Im can be reduced to

Im = 2πa2
∫ π

0

sinα
eikR

R
dα (13)

This is readily evaluated, e.g., put W = cosα, dW = − sinαdα, giving

Im = a sin(ka)
eikr

kr
. (14)

Unfortunately, −iωρ0u0Im is not the complete solution. Interestingly, try evaluating both −iωρ0u0Im

and the known exact solution of Eq.(10) in the ka << 1 limit, and find that they are equivalent. Why
is that?

Now return to the first integral in Eq. (11), call this Id because it is the dipole contribution. The
unknown pressure on the surface of sphere p(a) can be taken outside the integral, given that we at
least know it is a constant, and expressing ∂g

∂n
as ∇g · n⃗ then

Id =

∫
S

∇g · n⃗dS (15)

where p(a)Id gives the acoustic field from a uniform distribution of dipole sources over the surface
of the sphere.

The divergence theorem is used to convert the surface integral over the surface of the sphere
into a volume integral over the volume V of the sphere, of ∇2g. But now recall that

∇2g + k2g = −δ(|r⃗ − r⃗s|) (16)

Now equate ∇2g to −k2g − δ(|r⃗ − r⃗s|) and instead integrate these terms over the volume V .
But there are no receiver points, or field points, inside the sphere, since we are solving the prob-

lem for field points r⃗ outside of the sphere, or r > a. Thus, the argument |r⃗ − r⃗s| never becomes 0
inside the volume V and by the definition of the delta function, the volume integral of δ(|r⃗ − r⃗s|)
will be 0. Thus Id = −k2

∫
V
gdV . Apart from the k2 factor, Id describes a volume V (of the sphere)

now filled with point monopole sources, at source points r⃗s within the sphere, as result of applying
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the divergence theorem.
To proceed put R = |r⃗ − r⃗s| =

√
r2 + ρ2 − 2ρr cosα, where ρ varies from 0 to a, and Id becomes

Id =
1

2

∫ a

0

ρ2dρ

∫ π

0

sinα
eikR

R
dα. (17)

The integral over α can is more easily solved by putting w = cosα, dα = −dw
sinα

after which you
should arrive (maybe try it yourself?) at

Id = (ka cos ka− sin ka)
eikr

kr
(18)

Now, observe that evaluating Eq.(11) at a field point on the surface of the r⃗ = a (but not inside
the sphere), implies

p(a) = p(a)Id(a)− iωρ0u0Im(a) (19)

and find the unknown pressure p(a) equal to

p(a) =
−iωρ0u0Im(a)

1− Id(a)
(20)

with complete solution
p(r) = p(a)Id(r)− iωρ0u0Im(r) (21)

the first term being the dipole contribution and the second being the monopole contribution.
Everything in Eq. (21) is represented by the simple formula given in Eq.(10), for the problem

we already solved. With more algebraic manipulation they equate precisely. Instead its more inter-
esting to keep it as it is, broken out into its dipole and monopole terms; plot them out and see if the
coherent sum matches Eq. (10).

This is done (Fig. 5) for a sphere of radius a = 0.05 m, for which there is a uniform velocity
amplitude on the surface of the sphere of u0 = 0.001 m/s. The velocity has harmonic dependence
e−iωt. Results are computed for a frequency that stepped through from 10 Hz to 20000 Hz in 10 Hz
steps. This establishes a range of ka (using c = 330 m/s), which goes from values << 1 to about
20. The mean-square pressure is plotted at range 1 m for the monopole term (red line), dipole term
(blue line), their sum (black, dashed line), and the exact solution (green line) using of Eq. (10).

It should be clear that Eq.(21) works, and we have successfully modeled acoustic emission from
a spherical source in terms of a surface distribution of dipoles of strength p(a), and a surface dis-
tribution of monopoles of strength −iωρ0u0. It’s interesting to see that at some particular values of
ka either just the monopole or dipole term approximates the exact solution in Eq.(10) reasonably
well, as in ka ∼ 9.3 for the monopole and ka ∼ 11 for the dipole, with this behavior being periodic
ka. Additionally for ka less than about 0.2 the complete solution is well satisfied by the just the
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monopole term.

Figure 5: Mean square pressure at range 10 m associated with sound radiation from a sphere of radius
a = 0.05 m, vibrating with uniform velocity amplitude on the surface of the sphere u0 = 0.001 m/s. Results
are plotted as function of ka which is varied by increasing the frequency from 10 Hz to 20000 Hz. The
pressure is expressed in terms of a monopole contribution (red line), dipole contribution (blue line) and
exact solution (dashed green line) via Eq. (10). Combining the monopole and dipole distributions through
Eq.(21) also gives the exact solution.

We are done with the H-K integral in terms of ME525 involvement. More complicated ge-
ometries with curvature but without the kind symmetry we see in this problem, must be solved
numerically such as the boundary element method (BEM).

However, if the surface is relatively flat one can imagine that each dipole on the surface, with
dipole axis aligned with the local surface normal, will pretty much cancel itself out. Thus the Id part
of the H-K integral can be neglected, in favor of doing the computationally simpler Im integral. This
is the basis behind the Rayleigh integral discussed next and which you will have an opportunity to
work with.
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ME525 Applied Acoustics Lecture 13 Winter 2024
The Rayleigh integral, beam patterns, hydrodynamic
and geometric near and far fields

Peter H. Dahl, University of Washington

Rayleigh integral

We have now studied the Helmholtz-Kirchhoff integral , Eq.(1), to compute the sound radiation
from a surface S based on a generally variable normal velocity un(r⃗s) over the surface at position
r⃗s plus a similarly varying pressure distribution p(r⃗s) which can depend in complicated way on
un(r⃗s). (Where once again p(r⃗, t) = p(r⃗)e−iωt.)

p(r⃗) =

∫
S

[p(r⃗s)
∂g

∂n
− iωρ0un(r⃗s)g(r⃗, r⃗s)]dS (1)

Solution of Eq.(1) poses difficult numerical challenges, primarily involving finding the unknown
pressure distribution p(r⃗s). In some problems, such as sound radiation from a spherical source of
fixed radius a, the relation between p(r⃗s) and un(r⃗s) is worked out and the integral solved exactly.

If there are situations where the first integral in Eq.(1) can be ignored, the solution is greatly
simplified. Fortunately, this happens in many situations where the radiation surface S is planar (or
at least approximately so), as was first demonstrated by Rayleigh (see Junger and Feit, 1993).

To understand how this happens we introduce the concept of a baffle where there is a limited
portion of the planar surface that is vibrating and generating sound, while the remaining portion
of the surface idealized as rigid. The baffle within which the aperture (or sound radiating part) is
set (Fig. 1) theoretically extends to infinity in all directions and restricts the sound field to only one
hemisphere but otherwise does not vibrate.

The boundary condition on the aperture is such that it is impenetrable to sound, and reflects
sound completely. This means pressure on such a boundary will double (as if someone talking
very close to a hard wall- try it yourself), rather than pressure going to zero as observed from
sound below an air-water interface. The result of this reasoning is such that the first term of the
Helmoltz-Kirchhoff equation is eliminated and the second term is increased by a factor of two
(Pierce, 1989)

Now write formally the Rayleigh integral as

p(r⃗) = −i2ωρ0

∫
S

un(r⃗s)g(r⃗, r⃗s)dS. (2)

For the planar geometries involved in evaluating the Rayleigh integral, a Cartesian coordinate sys-
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Figure 1: Cartesian coordinate system established at the center of radiating rectangular aperture confined by
a baffle to restrict the sound field to z > 0. The elemental source dS is distance R from the field point where
R =

√
(x− xs)2 + (y − ys)2 + z2

tem centered on the radiating aperture (Fig. 1) is best, where

p(r⃗) =
−iωρ0
2π

∫
S

un(xs, ys)
eikR

R
dxsdys (3)

with R = |r⃗ − r⃗s|.
Next we relax the definition of a baffle that extends to infinity, and even relax (somewhat) the

criterion that the aperture be perfectly flat. Figure 2 shows two planar-like radiating apertures and
associated baffles that are used on small, autonomous underwater vehicles (AUV). Notice these are
slightly curved to match the hull curvature of the AUV. Furthermore. knowing the characteristic
length scales of aperture, as in L and W in Fig. 2, combined with sound frequency to give kW and
kL will yield much information without having to lift a finger!

We often encounter situations that simplify the computation even further, such as in Fig. 3
where W < L and kW << 1, representing a simple model for a line array. In these situations Eq.
(3) is effectively a 1-D integral along the y-axis using dys, and dxs can be considered a constant
representing W .

Beam patterns

We use the Rayleigh integral to study the beam pattern for radiation from a disk of diameter D
at particular frequency f and wavelength λ. A common result for this is Eq. (10) from monograph
High Frequency Underwater Sound in your resource section on the website.

The problem studied is radiation from a disk of diameter 2 m, observed at a set of field points
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Figure 2: Two planar-like apertures. Right: orange-colored aperture (made of acoustic transparent material)
surrounded by a baffle (black); lines identify two characteristic length scales, say L and W of the aperture.
Left: smaller aperture surrounded by an metallic frame that serves as the baffled. Both apertures and baffle
are slightly curved to fit within the side walls of an AUV.

Figure 3: Cartesian coordinate system established at the center of radiating line aperture confined to a baf-
fle to restrict the sound field to z > 0. The elemental source dS is distance R from the field point where
R =

√
(y − ys)2 + x2 + z2. Because the aperture width is narrow in the sense of kW << 1 the aperture is

considered a line array.

all at range 10 m from center of disk but at different angles. A top view [Fig. 4 (a)] shows field
points in blue, all having |r⃗ − r⃗s| equal to 10 m (coordinate axis centered on disk) but differing θ

with respect to a line perpendicular to the disk center. Another view [Fig. 4 (b)] the disk looks
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solid red, but it is composed of 1200 points, each with elemental area dS, the sum of all elemental
areas approximating the total area. Note: strictly speaking, a rigid baffle surrounds the radiating
disk. However the baffle is just a convenient conceptual bridge to help justify use of the Rayleigh
integral. For many applications as in this case, this feature of the problem can be effectively ignored.
The key property is the basic flatness of the aperture.

Figure 4: Problem studied: radiation from a disk of diameter 2 m, (a) observed at a set of field points (blue
dots) all at range 10 m from center of disk but at different angles θ (b) alternate view showing the red disk
and several field points at the same range but varying angle θ. Note that the set of field points align with a
line that would divide the disk evenly.

To complete the numerical integral each dS is multiplied by −iωρ0un

2π
eikR

R
, where R connects a

particular dS to the field point, and where un is normal velocity on the disk. For many problems
un is unknown, but can be assumed constant over the face of the radiating aperture. Since the
problem involves studying the pressure variation with angle and not the value of pressure per se
it is not essential to know un, which can be set to unity or some notional value to represent un.
However, the subject of study, pressure variation versus angle and range, is completely embodied
by the integral in Eq. (3) while assuming some arbitrary constant value for un.

Next define the pressure for θ = 0◦ as the on-axis pressure as it (generally) will be maximal on
the center axis where θ = 0◦. Also for this simple disk problem the circular symmetry means angu-
lar dependence (called the beam pattern) can be characterized by one angle, θ; more complicated
problems require two angles. Evaluate the computed pressure (or quantity proportional to it) from
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the Rayleigh integral and express results in decibels as follows

20 log10(|p(θ)|/|p(θ = 0◦)|) (4)

where pressure is computed at fixed range but variable θ. Plotting Eq. (4) as a function of θ gives a
beam pattern. One needs to know the beam pattern for design purposes that depend on application,
e.g., a high-resolution narrow beam for detail versus broad beam.

Hydrodynamic near field versus Geometric near and far fields

In Lecture 7 the concept of a near field kr << 1 and far field kr >> 1 were discussed. Based on
an idealized point source of the form p(r, t) = A

r
eikr−iωt, an effective boundary between these two

regions occurs at kr = 1, representing a very useful guide. On the kr < 1 side kinetic energy (KE)
began to exceed potential energy (PE), with difference growing as kr decreased further. Another
hallmark of the kr < 1 region was that specific acoustic impedance began to go as −iωρ0r where r

is distance from source, such that the basic property of sound in the form of a sound speed c, was
lost. Finally, the acoustic field components, pressure and velocity begin to become 90◦ out of phase
in this region.

At this stage of game it’s best to use a more precise language and call the region kr << 1 as
the hydrodynamic near field (Fahy,2001) because here the fluid velocity properties are more similar to
hydrodynamic flows, where compression-induced potential energy (characterized by sound speed
c) is small relative to kinetic energy. The handy guide for when this happens, kr < 1, is still valid.

The hydrodynamic near field has range r from the source as the only length scale, which is
parameterized by kr. In the current discussion involving the Rayleigh integral and beam patterns,
length scales of the radiating aperture such as length L and width W , or diameter D, influence
properties of the acoustic field as function of the range scale r. There is need for new definitions,
defined subsequently, which will be known formally as the geometric near field and geometric far field.

With the above introduction in mind, we continue with discussion of the problem of radiation
from a disk of diameter 2 m (Fig. 4). Results (Fig. 5) show calculation at 3 ranges defined by the
field point |r⃗ − r⃗s| equal to 4, 10 and 20 m but with varying θ. Notice that the 10 and 20 m results
are quite similar (if not effectively the same) whereas results at 4 m look different. This is because
10 m and beyond represents the geometric far field, also known as the Fraunhofer zone. In this
example, the geometric far field was determined by acoustic frequency (3000 Hz), medium speed
(water 1500 m/s) and radiating aperture size (disk diameter 2 m). Observe also for the case of 10
and 20 m, that the first maximum beyond the main lobe is about 17 dB less than the main lobe of
the beam, which is a far field characteristic for all beam patterns for circular disk sound sources, or
piston-like sources operating underwater.

At range 4 m the situation is quite different, because range 4 m represents is still within the
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geometric near field which is also known as the Fresnel zone. At a range or 4 m kr ∼ 50 for frequency
3000 Hz and sound speed 1500 m, and so this range is considerably beyond the range kr = 1.

Figure 5: Results from Eq.(3) calculated at 3 ranges defined by the field point |r⃗ − r⃗s| equal to 4, 10 and 20 m
but with varying θ.

Another way of looking at beam patterns is a polar plot (Fig. 6) which is same as Fig. 1 of
High Frequency Underwater Sound representing a 43 mm diameter disk (called a piston source) with
frequency 108 kHz, operating in water. Although the length and frequency scales are very different
from the problem just described, observe the first side lobe is also about 17 dB less than the main
lobe. Important reminder: here we are using the decibel as comparative metric. Thus we would
not write ” dB ref. 20µPa (for air), or ref. 1µPa (for water)”.

A simple formula πD2/4λ defines the critical range where geometric far field ( Fraunhofer zone)
behavior is expected. For any radiator of characteristic length scale L this formula is L2/λ. For the
case studied this range is ∼ 6 m, which explains why the 4 m in Fig. 5 result was in the geometric
near field and looked different.

Another handy formula is the beam width of the main lobe for disk transducer. This is the
angular width represented by the red, dashed line in Fig. 6, as determined by the angle where the
beam pattern has fallen by 3 dB from the maximum (sometimes called the ”3 dB” width). This
width (in degrees) is 60λ/D For the example of the 2 m diameter disk the formula gives 15◦.

We summarize these handy formulas on party napkins (impress your friends at a party). Use L

Copyright © 2024 P. H. Dahl. All Rights Reserved.



7

Figure 6: Polar plot of a beam pattern. See also Fig. 1 of High Frequency Underwater Sound.

Figure 7: Some basic rules for the distance to the far field and associated beam width of a radiating aperture
of length scale L and wavelength λ.

for characteristic scale; for a disk, substitute diameter D for L and the result is nearly exact. Also,
further simplify the geometric far field result by noting π/4 is sufficiently close to 1.

These are valuable for their quick-estimating power–but they can also serve as a check on on a
numerical study – if the result of that study differs markedly with these rules you have reason to
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Figure 8: Beam pattern at various ranges from a line array of length 6 m operating in water at frequency 2000
Hz.

question the numerical results. An example involving a line array of length L (Fig. 8) shows the
beam pattern evolving with range. For this case L2/λ is about 47 m, and observe that between 40
and 50 m the beam pattern stabilizes to its geometric far field result. The far field result is sin(s)/s

where s = kL
2
sin(θ).

Finally, exercise some caution when using this terminology. You might come across to others as
being overly particular in using terms like geometric near and far field, when perhaps more expe-
rienced professionals might abbreviate these terms as just near and far field while discussing beam
patterns and other properties of sound radiation. One solution is to reserve the term hydrodynamic
near field for the special case of kr < 1 and there are otherwise no other length scales such as L,W

or D involved, and use near and far field when such scales are involved.
References

M. C. Junger and D. Feit,Sound, Structures, and Their Interaction (Acoustical Society of America,
and American Institute of Physics, 1993)
Pierce, A. B, Acoustics, An Introduction to its Physical Principals and Applications, (Acoustical Society
of America, and American Institute of Physics, 1989). See in particular pp. 213-214.
F. Fahy, Foundations of Engineering Acoustics (Elsevier Academic Press, San Diego, CA, 2001)

Copyright © 2024 P. H. Dahl. All Rights Reserved.



1

ME525 Applied Acoustics Lecture 14, Winter 2022
About the Fraunhofer zone and the Rayleigh integral
additional numerical details and study of near field far field ranges

Peter H. Dahl, University of Washington

The Fraunhofer zone

Consider an aperture of length L and width W with kW << 1, so we need only study the effects
of L. At some close range and you measure the radiated pressure (amplitude) as function of angle
θ; call this result the function H1(θ) (Fig. 1). Move on out to another range, and a very different
function, H2(θ) is determined. Now move considerably farther out in range, and a third function
B(θ) is measured; move out some more and the angular dependence has not changed—now you’ve
entered the Fraunhofer zone.

Figure 1: Measures of pressure from the array of length L at four ranges with angular dependence of pressure
variation for fixed range

In the Fraunhofer zone:

• angular dependence, B(θ), does not vary with range,

• pressure is varying as 1/r, where r is range from the center of the aperture. The function B(θ)

is also called the beam pattern. (More typically B(θ) is expressed as either its absolute value,
or as an intensity beam pattern, |B(θ)|2).

• B(θ) has a Fourier transform relation to this aperture geometry, i.e., the longer the L the more
narrow the B(θ).

To understand this, look at a contribution from an elemental source, dp, at the field point (Fig.
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Figure 2: Result of an elemental source measured by a field point in the Fraunhofer zone.

2), where

dp =
A

ρ
eikρdx (1)

Let the scalar value ρ be the slant range from the elemental source to the field point which equals
|r⃗1− r⃗| , where r⃗1 is the position vector of source point and r⃗ is that for the field point. At a sufficient
distance from the aperture approximate ρ ith the binomial approximation:

ρ = |r⃗|+ x sin θ +
x2

2|r⃗|
cos2 θ + ... (2)

Taking the first term beyond |r⃗| is called the Fraunhofer approximation, and including the next
term is called the Fresnel approximation. Continuing with the Fraunhofer approximation,integrate
the elemental sources along the line array. For this we write |r⃗| as r, with result:

p(r, θ) =
A

r
eikr

∫ L/2

−L/2

eikx sin θdx =
A

r
eikr

sin s

s
(3)

where s = kL
2
sin θ and thus B(θ) = sin s

s
. (The constant A is used to insure Eq.(3) has dimension

of pressure, but otherwise it is of no consequence.) Notice that denominator of Eq.(1), which would
have been ρ ≈ |r⃗|+x sin θ in the Fraunhofer sense, is further approximated by ρ ≈ r, allowing A

ρ
eikρ

to be outside the integral in Eq.(3).
Recognize now that integration over the length of the aperture, yielding B(θ) as a Fourier trans-

form of the aperture. As in all Fourier transform relations there is an inverse relation between the
Fourier transform variables (e.g., like time and frequency). Here, the longer the aperture length L,
the narrower the function B(θ) becomes.

Typically, angular width is determined as follows: The pressure or intensity are maximal at
θ = 0, for which puts B = 1, and 20log10|B| = 0 dB. Find angle θ3db such that 20log10|B(θ3db)| = -3
dB; call this the “3 dB half angle” and doubling it gives the nominal angular width of the array. Find
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that θ = 0 (in radians) goes at 1/(kL), which is consistent with our notion of the Fourier transform
inverse relation. In fact, θ3db ≈ π/(kL) is a reasonable approximation.

When does the Fraunhofer approximation apply? Consider tEq.(2) and write instead kρ =

k|r⃗| + kx sin θ. This requires k x2

2|r⃗| << 1 since the cos factor is always order unity. As the maximum
extent of x equals L/2, we should incorporate L into the bound. This requires r being much greater
than kL2

8
. In practice this bound will be nominally satisfied with r > L2/λ.

Numerical implementation of the Rayleigh Integral

A typical example for the Rayleigh integral in Eq. (1) is shown in Fig. 3

p(r⃗) =
−iωρ0
2π

∫
S

un(xs, ys)
eikR

R
dxsdys (4)

where R = |r⃗−r⃗s|. With few exceptions this is implemented numerically, the most common method
through a summation from each contribution originating from area dS.1 It is essential to properly
size the elemental area dS, otherwise there will numerical errors in approximating the Rayleigh
integral. From our previous notion of a monopole source of radiation area A, we anticipate a
requirement that

√
dS << λ.

Now let’s assume kW is not << 1, and there is a rectangular array of area LW . The same ideas
apply, the new rule for transition to Fraunhofer zone is r > LW

λ
, and there is of course another

beam pattern function that relates to kW . The combined beam pattern function is the product of
the two sinc functions.

It’s useful to compare numerical results with an exact solution for the beam pattern of a line
array in the geometric far field (this being sin(s)/s where s = kL

2
sin(θ)). Figure 4 shows B(θ) for

a line array of L = 2 m, operating at 5000 Hz in water. This is a 1D integral so here the dS is
effectively determined by dys, and the ”length scale” of an elemental source is dys.

Three attempts are made as parameterized by kdys, and it should be clear that we need to have
kdys < 1 to get acceptable results. For the case of kdys = 0.21 there is effectively no difference
between the numerical and exact result. The experiment is repeated at higher frequency 8000 Hz
(Fig. 5) giving a different set of three kdys values, showing that kdys = 0.34 is also close. Also
observe the reduced beam width for 8000 Hz, as defined by angular width of the main lobe, or
alternatively, width to the first null.

In summary the results suggest this rule: kdys < 0.2 for 1D line array study, and k
√
S ≤ 0.2 for

2D study as in Fig. 3 which is of course consistent with the original conjecture of
√
dS << λ.

Range dependence and the near and far fields

1The term for this is a Riemann summation; see Foote,( 2014).

Copyright © 2024 P. H. Dahl. All Rights Reserved.



4

Figure 3: Cartesian coordinate system established at the center of radiating rectangular aperture confined to
a baffle to restrict the sound field to z > 0. The elemental source dS is distance R from the field point where
R =

√
(x− xs)2 + (y − ys)2 + z2

The field on the acoustic axis of a rectangular array of L = 1.5 m, W = 2 m, is plotted as a
function of range (Fig. 6), showing the complicated pattern that develops immediately in front
of the array: this is the near field. With increasing range away from the aperature the field settles
down into more smooth decay: this is the far field. Here pressure goes as ∼ 1/R–or the inverse
range spreading we would have expected all along from a compact point source.

The near field-far field transition is well predicted by the basic guide LW/λ. For nearly all
applications, this transition must be well understood. For example, in a system calibration of this
array it is desirable to place a test acoustic source (or acoustic receiver) in the far field to either
receive from or transmit signals to this array. Thus, it is essential to know, with confidence, that
this position is indeed in the far field because here the pressure field has simplified behavior, going
as ∼ 1/R (dotted line in Fig. 6), and it is straightforward to correct measurement made at different
ranges.

Next let us examine the 2D angular properties in the acoustic field, here using a rectangular
array of L = 1.2 m, W = 0.6 m, again operating at 5000 Hz in water (Fig. 7). These calculations are
made well into the far field (i.e., range >> LW/λ), and you should by now have an intuitive feel
for the results.

For one case in Fig. 7, θ sweeps across the L dimension such that θ = 0◦ aligns with z axis and
θ = 90◦ aligns with y axis; for the other case θ sweeps across the W dimension such that θ = 90◦

aligns with x axis (see also Fig. 3). Since L > W we expect the beam width across L to be more
narrow than that across the W dimension, consistent with the Fourier relation between aperture
scale and angular width. Since the calculations are made well in the far field the sin(s)/s associated
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Figure 4: beam pattern B(θ) as expressed by 20 log10 |p(θ)|/|pmax| computed in the far field of a line array of
length 2 m, frequency 5000 Hz in water. Dashed, red line is the result computed using the identified kdys
giving size of dys and solid, black line is theoretical result.

with each dimension predicts the beam pattern quite well, where s is either kL
2
sin(θ)) or kW

2
sin(θ).

Figure 8 shows the beam pattern as if looking straight into the beam at some position in far field.
Because the long side L is oriented horizontally, the beam appears more narrow in this direction.

Array shading and a practical application of the Rayleigh Integral in Medical Ultrasound

A simple demonstration of aperture (or array) shading is illustrated in Fig. 9. An aperture
about 15 by 21 cm is shown on the left side. The unshaded narrow beam based on the full 15 by
21 cm dimension is shown by the red beam pattern on the right side. We can shade this aperture
in a simple way by by setting all sources, as in un(xs, ys) of Eq.(4), to 0, for source locations on the
corners of the aperture. The shaded aperture is shown by the black on left side and corresponding
beam pattern on right side. The total length of the shaded aperture is still the same but you can see
that the shaded beam pattern has broadened somewhat and side lobes have been reduced.

There are many applications where this result is desirable and the Rayleigh integral can be
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Figure 5: Beam pattern B(θ) as expressed by 20 log10 |p(θ)|/|pmax| computed in the far field of a line array of
length 2 m, frequency 8000 Hz in water. Dashed, red line is the result computed using the identified kdys
giving size of dys and solid, black line is theoretical result.

used as an exploratory tool find an optimal solution. A more sophisticated example of this is
provided by Dr. Wayne Kreider of the Applied Physics Laboratory’s Center for Industrial and
Medical Ultrasound. In this case the aperture is composed of 256 elements arranged in a spiral
(Fig. 10) which at the transmit frequency of 1.5 MHz, produces a focus point at about 120 mm
away on the acoustic axis (Fig. 11). Keep in mind that given the combination of element diameter
d of 7 mm, and the high frequency 1.5 MHz, puts kd >> 1 and thus a Riemann summation with
appropriately small dS must be applied to each of the 256 elements. More on this study can be
found in Kreider, et al. (2018).
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Figure 6: Relative magnitude of pressure field (expressed dB) on the acoustic axis of a rectangular array of
array of L = 1.5 m, W = 2 m as function of range, for frequency 5000 Hz operating in water. The near-far
field transition point is shown at range = LW/λ, after the pressure magnitude goes as ∼ 1/R
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Figure 7: Relative magnitude of pressure field (expressed dB) on the acoustic axis of a rectangular array of
array of L = 1.2 m, W = 0.6 m as function of angle θ, for frequency 5000 Hz operating in water. For one case
θ sweeps across the L dimension such that θ = 0◦ aligns with z axis and θ = 90◦ aligns with y axis; for the
other case θ sweeps across the W dimension such that θ = 90◦ aligns with x axis. See Fig. 1 for geometry.
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Figure 8: Beam pattern from example in Fig. 7 as if looking straight into the beam at some position in far
field. Red-to-blue denotes high-to-low levels of the beam pattern. The beam originates from an aperture
shown in Fig. 3. Because the long side L is oriented horizontally, the beam appears more narrow in this
direction.

Figure 9: left side: shaded aperture (black) and unshaded aperture (red + black). Right side: Beam pattern
computed in the far field for frequency 30 kHz, representing pattern for the long axis of the aperture, for
shaded aperture (black) and unshaded aperture (red).
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Figure 10: 256 element spiral array used for focused ultrasound applications in diagnostic and therapeutic
applications in medical ultrasound.

Figure 11: Field characterization near the focus points based on the Rayleigh integral (thick, gray lines)
compared with measurement.
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